Accessibility Tools

2023-03-03
Osiągnięcia
Charge dopants control quantum spin Hall materials
Destructive role of acceptors occupied by holes in the quantum spin Hall effect regime. Two backscattering processes between helical states are allowed in the presence of electron-hole exchange and spin-orbit interaction: (1) spin-conserving and (2) spin non-conserving.

Unlike in the quantum Hall effect and quantum anomalous Hall effect, the quantization precision in the quantum spin Hall effect depends on unavoidable background impurities and defects. However, doping with magnetic ions restores the quantization accuracy.

Semiconductors' sensitivity to electrostatic gating and doping accounts for their widespread use in information communication and new energy technologies. In the two companion papers, Tomasz Dietl, inspired by experimental data accumulated in Wuerzburg and Warsaw, demonstrates quantitatively and with no adjustable parameters that the presence of paramagnetic acceptor dopants elucidates a variety of hitherto puzzling properties of two-dimensional topological semiconductors at the topological phase transition and in the regime of the quantum spin Hall effect.

The concepts of resonant states, charge correlation, Coulomb gap, exchange interaction between conducting electrons and holes localized on acceptors, strong coupling limit of the Kondo effect, the Luttinger correlations, and bound magnetic polaron explain a short topological protection length, high hole mobilities compared with electron mobilities, and different temperature dependence of the spin Hall resistance in HgTe and (Hg,Mn)Te quantum wells. A new concept of precessional dephasing of a carrier spin by a dense bath of localized spins is put forward.

 


Contact with IF PAN scientists


Graphic materials



See more

An artificial polariton neuron as a step towards photonic systems that mimic the operation of the human brain

 Laser & Photonics Reviews 2100660 (2022)

Scientists from the Institute of Physics, Polish Academy of Sciences, and the Faculty of Physics at the University of Warsaw used photons to create a spiking neuron, i.e. the basic element of the future photonic neural network processor.

The optical Stern-Gerlach Deflection and Young’s experiment in the reciprocal space

Physical Review Letters 127, 190401 (2022)

Scientists for the first time demonstrated Young's experiment for photons in the reciprocal space.

Długookresowy charakter uporządkowania magnetycznego indukowany przez adsorpcje molekuł chiralnych na powierzchni cienkiej warstwy ferromagnetyka

ACS Nano 15, 5574 (2021)

Wyniki pracy mają także istotne znaczenie dla potencjalnych zastosowań w przemyśle farmaceutycznym, gdzie jednym z ważnych problemów jest separacja molekuł lewoskrętnych i prawoskrętnych, które mogą mieć diametralnie różne działanie terapeutyczne.
Save
Cookies user preferences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Essential
Essential cookies
These cookies are necessary for the correct operation of the website and therefore cannot be disabled on this level; the use of these cookies does not involve the processing of personal data. While you can disable them via your browser settings, doing so may prevent the website from working normally.
Accept
Analytical cookies
These cookies are particularly intended to enable the website administrator to monitor the website traffic statistics, as well as the sources of traffic. Such data is typically collected anonymously.
Google Analytics
Accept
Decline